Leon de Windt

Professor

Prof. Leon de Windt obtained a Master’s degree in Molecular Biology at Utrecht University in 1994, and a PhD in Cardiovascular Physiology at Maastricht University in 1999. Following a post-doctoral residence at the Howard Hughes Medical Institute of Jeffery Molkentin in Cincinnati OH, USA, he became group leader at the Hubrecht Institute in Utrecht. As of 2010, he was appointed as Professor of Molecular Cardiovascular Biology at Maastricht University and chairs a team including one associate professor, one tenure-track assistant professor and 15 PhD students. Leon is the recipient of several Awards, including a 2008 Fondation Leducq Transatlantic Network of Excellence; the 2012 Outstanding Achievement Award of the ESC Council for Basic Cardiovascular Science and the 2012 Galenus Research Prize. In 2013, he received an ERC Consolidator Grant from the European Research Council (ERC) and became coordinator of Dutch Heart Foundation funded CVON-ARENA consortium to support his work. He received the Veni (2001), Vidi (2007) and Vici (2017) career development awards from the Netherlands Organisation of Scientific Research (NWO). In 2018, he became coordinator of the Dutch Heart Foundation funded DCVA-ARENA-PRIME consortium aimed to tackle inherited heart diseases. Since 2019 he coordinates the Marie Skłodowska Curie Actions Innovative Training Network 'TRAIN-HEART' (www.train-heart.eu).

His research focusess on the function of non-coding RNAs as epigenetic regulators of cardiac gene expression using genetic manipulation in (iPS-derived) cardiomyocytes and mouse models. More recently, his team exploits their academic findings towards rational therapy development for various genetic and acquired forms of heart failure in the Dutch spin-off company Mirabilis Therapeutics BV that he co-founded in 2015. The research is performed in close collaboration with chemists, life scientists, and clinicians, and often executed within public-private partnerships. Many alumni from his group have successfully started their own research laboratories, fulfill executive industrial functions or became clinician-researchers as the future generation of leaders in medicine (see: www.dewindtlab.com).

 

Department of Cardiology
Department of Molecular Biology and RNA Technology 
Universiteitsingel 50, 6229 ER Maastricht
PO Box 616, 6200 MD Maastricht

  • 2023
    • Rabussier, G., Bunter, I., Bouwhuis, J., Soragni, C., van Zijp, T., Ng, C. P., Domansky, K., Windt, L. J. D., Vulto, P., Murdoch, C. E., Bircsak, K. M., & Lanz, H. L. (2023). Healthy and diseased placental barrier on-a-chip models suitable for standardized studies. Acta Biomaterialia, 164(1), 363-376. https://doi.org/10.1016/j.actbio.2023.04.033
    • Juni, R. P., Kocken, J. M. M., Abreu, R. C., Ottaviani, L., Davalan, T., Duygu, B., Poels, E. M., Vasilevich, A., Hegenbarth, J. C., Appari, M., Bitsch, N., Olieslagers, S., Schrijvers, D. M., Stoll, M., Heineke, J., de Boer, J., de Windt, L. J., & da Costa, P. A. (2023). MicroRNA-216a is essential for cardiac angiogenesis. Molecular Therapy, 31(6), 1807-1828. https://doi.org/10.1016/j.ymthe.2023.04.007
    • Soragni, C., Vergroesen, T., Hettema, N., Rabussier, G., Lanz, H. L., Trietsch, S. J., de Windt, L. J., & Ng, C. P. (2023). Quantify permeability using on-a-chip models in high-throughput applications. STAR protocols, 4(1), Article 102051. https://doi.org/10.1016/j.xpro.2023.102051
    • de Boer, M., Hekkert, M. T., Chang, J., van Thiel, B. S., Martens, L., Bos, M. M., de Kleijnen, M. G. J., Ridwan, Y., Octavia, Y., van Deel, E. D., Blonden, L. A., Brandt, R. M. C., Barnhoorn, S., Bautista-Nino, P. K., Krabbendam-Peters, I., Wolswinkel, R., Arshi, B., Ghanbari, M., Kupatt, C., ... Duncker, D. J. (2023). DNA repair in cardiomyocytes is critical for maintaining cardiac function in mice. Aging Cell, 22(3), Article e13768. https://doi.org/10.1111/acel.13768
    • Vilaça, A., de Windt, L. J., Fernandes, H., & Ferreira, L. (2023). Strategies and challenges for non-viral delivery of non-coding RNAs to the heart. Trends in Molecular Medicine, 29(1), 70-91. https://doi.org/10.1016/j.molmed.2022.10.002
  • 2022
    • Hegenbarth, J. C., De Majo, F., Spano, G., Olieslagers, S., Esfandyari, D., Tiburcy, M., Zimmermann, W. H., Stoll, M., & de Windt, L. (2022). Machine learning-assisted integration of single cell transcriptomic data identifies potential cardiomyocyte maturation genes. Journal of Molecular and Cellular Cardiology, 173, S47-S47. https://doi.org/10.1016/j.yjmcc.2022.08.094
    • Spano, G., Hegenbarth, J. C., De Majo, F., Tiburcy, M., Zimmermann, W. H., & de Windt, L. (2022). RNA m6A modification governs early human cardiomyocyte commitment. Journal of Molecular and Cellular Cardiology, 173, S108-S109. https://doi.org/10.1016/j.yjmcc.2022.08.215
    • Soragni, C., Rabussier, G., Lanz, H. L., Bircsak, K. M., de Windt, L. J., Trietsch, S. J., Murdoch, C. E., & Ng, C. P. (2022). A versatile multiplexed assay to quantify intracellular ROS and cell viability in 3D on-a-chip models. Redox Biology, 57, Article 102488. https://doi.org/10.1016/j.redox.2022.102488
    • Videira, R. F., Koop, A. M. C., Ottaviani, L., Poels, E. M., Kocken, J. M. M., Dos Remedios, C., Mendes-Ferreira, P., Van De Kolk, K. W., Du Marchie Sarvaas, G. J., Lourenço, A., Llucià-Valldeperas, A., Nascimento, D. S., de Windt, L. J., De Man, F. S., Falcão-Pires, I., Berger, R. M. F., & da Costa Martins, P. (2022). The adult heart requires baseline expression of the transcription factor Hand2 to withstand right ventricular pressure overload. Cardiovascular Research, 118(12), 2688-2702. https://doi.org/10.1093/cvr/cvab299
    • Raso, A., Dirkx, E., Sampaio-Pinto, V., El Azzouzi, H., Cubero, R. J., Sorensen, D. W., Ottaviani, L., Olieslagers, S., Huibers, M. M., de Weger, R., Siddiqi, S., Moimas, S., Torrini, C., Zentillin, L., Braga, L., Nascimento, D. S., da Costa Martins, P. A., van Berlo, J. H., Zacchigna, S., ... De Windt, L. J. (2022). Author Correction: A microRNA program regulates the balance between cardiomyocyte hyperplasia and hypertrophy and stimulates cardiac regeneration. Nature Communications, 13(1), Article 4977. https://doi.org/10.1038/s41467-022-32785-0