Wouter Huberts

Assistant Professor

Dr Wouter Huberts graduated with a specialisation in medical engineering at the Eindhoven University of Technology (TU/e). Thereafter, he received his PhD degree at Maastricht University based on his thesis entitled 'Personalized modelling of vascular access creation'. Simultaneously, he successfully completed a two-year postdoctoral program (Qualified Medical Engineer at the School of Medical Physics and Engineering, TU/e).

Before that, Dr Wouter Huberts was appointed at the Department of Biomedical Engineering that is chaired by Prof. Tammo Delhaas and is embedded within CARIM, he served two years as a post-doc within the cardiovascular biomechanics group of the TU/e (CVBM chaired by Prof. van de Vosse). Currently, he is still appointed as (visiting) staff member in the CVBM group and he serves as coordinator of the TU/e master medical engineering at the Maastricht University.

Dr Wouter Huberts is amedical engineer who has a large affinity for teaching and has a major interest in the development of personalized physics-based modelling tools to support decision-making in clinics. His interests and expertise are in (computational) fluid mechanics, sensitivity analysis and uncertainty quantification. His current research line ‘Personalized cardiovascular modelling’ is focussed on the development of personalised physics- and physiology-based mathematical models of the cardiovascular system aiming for clinical decision-support.

The development and subsequent application of uncertainty quantification and sensitivity analysis tools are prerequisites when one aims to apply mathematical models for decision support.


Department of Biomedical Engineering
Universiteitssingel 50, 6229 ER Maastricht
PO Box 616, 6200 MD Maastricht
Room number: H3.354
T: +31(0)43 388 16 61

  • 2024
    • Koopsen, T., van Osta, N., van Loon, T., Meiburg, R., Huberts, W., Beela, A. S., Kirkels, F. P., van Klarenbosch, B. R., Teske, A. J., Cramer, M. J., Bijvoet, G. P., van Stipdonk, A., Vernooy, K., Delhaas, T., & Lumens, J. (2024). Parameter subset reduction for imaging-based digital twin generation of patients with left ventricular mechanical discoordination. Biomedical Engineering Online, 23(1), Article 46. https://doi.org/10.1186/s12938-024-01232-0
    • Hilhorst, P. L. J., Quicken, S., van de Vosse, F. N., & Huberts, W. (2024). Efficient sensitivity analysis for biomechanical models with correlated inputs. International Journal for Numerical Methods in Biomedical Engineering, 40(2), Article e3797. https://doi.org/10.1002/cnm.3797
    • Parikh, S., Giudici, A., Huberts, W., Delhaas, T., Bidar, E., Spronck, B., & Reesink, K. (2024). Significance of Dynamic Axial Stretching on Estimating Biomechanical Behavior and Properties of the Human Ascending Aorta. Annals of Biomedical Engineering. Advance online publication. https://doi.org/10.1007/s10439-024-03537-6
    • Verstraeten, S., Hoeijmakers, M., Tonino, P., Brüning, J., Capelli, C., van de Vosse, F., & Huberts, W. (2024). Generation of synthetic aortic valve stenosis geometries for in silico trials. International Journal for Numerical Methods in Biomedical Engineering, 40(1), Article e3778. https://doi.org/10.1002/cnm.3778
  • 2023
    • Parikh, S., Moerman, K. M., Ramaekers, M. J. F. G., Schalla, S., Bidar, E., Delhaas, T., Reesink, K., & Huberts, W. (2023). Biomechanical Characterisation of Thoracic Ascending Aorta with Preserved Pre-Stresses. Bioengineering, 10(7), Article 846. https://doi.org/10.3390/bioengineering10070846
    • van Vliet, L. V., Zonnebeld, N., Tordoir, J. H., Huberts, W., Bouwman, L. H., Cuypers, P. W., Heinen, S. G., Huisman, L. C., Lemson, S., Mees, B. M. E., Schlosser, F. J., de Smet, A. A., Toorop, R. J., Delhaas, T., & Snoeijs, M. G. (2023). Guideline recommendations on minimal blood vessel diameters and arteriovenous fistula outcomes. Journal of vascular access. Advance online publication. https://doi.org/10.1177/11297298231180627
    • van Vliet, L. V., Zonnebeld, N., Tordoir, J. H., Huberts, W., Delhaas, T., & Snoeijs, M. G. (2023). Arteriovenous Fistulas Created with the Help of Personalised Blood Flow Simulations: Clinical Outcomes of a Randomised Controlled Trial. European Journal of Vascular and Endovascular Surgery, 65(6), 907-908. https://doi.org/10.1016/j.ejvs.2023.02.072
  • 2022
    • Shahmohammadi, M., Huberts, W., Luo, H. X., Westphal, P., Cornelussen, R. N., Prinzen, F. W., & Delhaas, T. (2022). Hemodynamics-driven mathematical model of third heart sound generation. Frontiers in physiology, 13, Article 847164. https://doi.org/10.3389/fphys.2022.847164
    • van Willigen, B. G., van der Hout-van der Jagt, M. B., Huberts, W., & van de Vosse, F. N. (2022). A review study of fetal circulatory models to develop a digital twin of a fetus in a perinatal life support system. Frontiers in pediatrics, 10, Article 915846. https://doi.org/10.3389/fped.2022.915846