Jordi Heijman

Associate professor

Dr Jordi Heijman studied Knowledge Engineering and obtained his PhD cum laude (a distinction awarded to only 5% of PhDs in the Netherlands) in April 2012, for his work on a joint project between the Dept. of Cardiology and the Dept. of Data Science and Knowledge Engineering at Maastricht University. As part of his PhD, he spent 1.5 years at the renowned Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, USA under the supervision of Prof. Yoram Rudy. After completing his PhD, he worked as a postdoctoral fellow at the Medical Faculty Mannheim, Heidelberg University, and the Institute of Pharmacology, University Duisburg-Essen with Prof. Dobromir Dobrev. In April 2015, he was recruited back to Maastricht University to strengthen the translational axis between CARIM and the Maastricht UMC+ Heart+Vascular Center for their strategic focus area ‘cardiac arrhythmias’. He is currently working as an associate professor at the Department of Cardiology.

Jordi’s research combines experimental and computational methods to investigate the mechanisms of cardiac arrhythmias. His work is funded by prestigious grants (NWO Veni 2015, Dutch Heart Foundation/CVON Predict Young Talent Program 2017, NWO Vidi 2020). He has published >100 peer-reviewed articles, the majority as (shared-)first author, many in high-impact journals such as Circulation (3x), Circulation Research (8x), The European Heart Journal (1x), Nature Reviews in Cardiology (1x) and Science Translational Medicine (1x). These articles have been cited >3500 times, and emphasize the need for interdisciplinary research to advance the diagnosis and treatment of cardiac arrhythmias. His expertise is recognized as invited speaker for numerous international conferences, including the EHRA, ESC, AHA, ISHR and HRS meetings, and as referee for scientific journals and grant applications.

Furthermore, he serves on various committees, including the Strategic Board of CARIM, and as chair-elect of the ESC Working Group on Cardiac Cellular Electrophysiology. He is an associate editor for International Journal of Cardiology: Heart & Vasculature and in 2018 was Co-Chair of the 45thComputing in Cardiology conference. His work has received attention from several general media in response to a nomination for the popular science magazine NewScientist’s top 25 of young scientific talent 2016.

Department of Cardiology
P. Debyelaan 25, 6229 HX Maastricht 
PO Box 5800, 6202 AZ Maastricht

  • 2023
    • Dobrev, D., Heijman, J., Hiram, R., Li, N., & Nattel, S. (2023). Inflammatory signalling in atrial cardiomyocytes: a novel unifying principle in atrial fibrillation pathophysiology. Nature Reviews Cardiology, 20(3), 145-167. https://doi.org/10.1038/s41569-022-00759-w
  • 2022
    • Xenakis, M. N., Kapetis, D., Yang, Y., Heijman, J., Waxman, S. G., Lauria, G., Faber, C. G., Smeets, H. J., Lindsey, P. J., & Westra, R. L. (2022). Correction to: Non-extensitivity and criticality of atomic hydropathicity around a voltage-gated sodium channel's pore: a modeling study. Journal of Biological Physics, 48(4), 477-478. https://doi.org/10.1007/s10867-022-09616-w
    • Scheurlen, C., van den Bruck, J-H., Filipovic, K., Wörmann, J., Arica, Z., Erlhöfer, S., Dittrich, S., Heijman, J., Lüker, J., Steven, D., & Sultan, A. (2022). Procedural and outcome impact of obesity in cryoballoon versus radiofrequency pulmonary vein isolation in atrial fibrillation patients. Journal of Interventional Cardiac Electrophysiology, 65(2), 403-410. https://doi.org/10.1007/s10840-022-01210-3
    • Cai, M., Schotten, U., Dobrev, D., & Heijman, J. (2022). Atrial fibrillation substrate development before, during and after cardiac surgery: Who is to blame for late post-operative atrial fibrillation?International Journal of Cardiology, 365, 44-46. https://doi.org/10.1016/j.ijcard.2022.07.027
    • Heijman, J., & Dobrev, D. (2022). Determinants and therapeutic potential of calcium handling abnormalities in atrial fibrillation: What can we learn from computer models?The Journal of Physiology. https://doi.org/10.1113/jp283817
    • Heijman, J., & Dobrev, D. (2022). Molecular determinants and therapeutic potential of focal ectopic activity: more than meets the Iti. European Heart Journal, 43(40), 4208-4210. https://doi.org/10.1093/eurheartj/ehac357
    • Meier, S., & Heijman, J. (2022). Commentary: EP-PINNs: Cardiac electrophysiology characterisation using physics-informed neural networks. Frontiers in cardiovascular medicine, 9, [1003652]. https://doi.org/10.3389/fcvm.2022.1003652
    • Cunha, P. S., Laranjo, S., Heijman, J., & Oliveira, M. M. (2022). The Atrium in Atrial Fibrillation - A Clinical Review on How to Manage Atrial Fibrotic Substrates. Frontiers in cardiovascular medicine, 9, [879984]. https://doi.org/10.3389/fcvm.2022.879984
    • Wiedmann, F., Beyersdorf, C., Zhou, X-B., Kraft, M., Paasche, A., Jávorszky, N., Rinné, S., Sutanto, H., Büscher, A., Foerster, K. I., Blank, A., El-Battrawy, I., Li, X., Lang, S., Tochtermann, U., Kremer, J., Arif, R., Karck, M., Decher, N., ... Schmidt, C. (2022). Treatment of atrial fibrillation with doxapram: TASK-1 potassium channel inhibition as a novel pharmacological strategy. Cardiovascular Research, 118(7), 1728-1741. https://doi.org/10.1093/cvr/cvab177
    • Gawalko, M., Saljic, A., Li, N., Abu-Taha, I., Jespersen, T., Linz, D., Nattel, S., Heijman, J., Fender, A., & Dobrev, D. (2022). Adiposity-associated atrial fibrillation: molecular determinants, mechanisms, and clinical significance. Cardiovascular Research. https://doi.org/10.1093/cvr/cvac093
    • Saljic, A., Heijman, J., & Dobrev, D. (2022). Emerging Antiarrhythmic Drugs for Atrial Fibrillation. International Journal of Molecular Sciences, 23(8), [4096]. https://doi.org/10.3390/ijms23084096
    • Sutanto, H., & Heijman, J. (2022). Integrative Computational Modeling of Cardiomyocyte Calcium Handling and Cardiac Arrhythmias: Current Status and Future Challenges. Cells, 11(7), [1090]. https://doi.org/10.3390/cells11071090
    • Colman, M. A., Alvarez-Lacalle, E., Echebarria, B., Sato, D., Sutanto, H., & Heijman, J. (2022). Multi-Scale Computational Modeling of Spatial Calcium Handling From Nanodomain to Whole-Heart: Overview and Perspectives. Frontiers in physiology, 13, 836622. [836622]. https://doi.org/10.3389/fphys.2022.836622
  • 2021
    • Ravens, U., Gomez, A. M., Heijman, J., Remme, C. A., Dobrev, D., Smith, G., Volders, P. G. A., Cerbai, E., Eisner, D. A., Casadei, B., Zaza, A., Richard, S., Mugelli, A., Vassort, G., Brown, H. F., & Sipido, K. R. (2021). Edward Carmeliet (1930-2021)-channelling scientific curiosity: a tribute from the ESC Working Group on Cardiac Cellular Electrophysiology†. Cardiovascular Research, 117(14), e171-e173. https://doi.org/10.1093/cvr/cvab333
    • Heijman, J., Rahm, A-K., & Dobrev, D. (2021). Stretching the limits of antiarrhythmic drug therapy: The promise of small-conductance calcium-activated potassium channel blockers. IJC Heart and Vasculature, 37, [100924]. https://doi.org/10.1016/j.ijcha.2021.100924
    • Cluitmans, M. J. M., Bear, L. R., Nguyên, U. C., van Rees, B., Stoks, J., Ter Bekke, R. M. A., Mihl, C., Heijman, J., Lau, K. D., Vigmond, E., Bayer, J., Belterman, C. N. W., Abell, E., Labrousse, L., Rogier, J., Bernus, O., Haïssaguerre, M., Hassink, R. J., Dubois, R., ... Volders, P. G. A. (2021). Noninvasive detection of spatiotemporal activation-repolarization interactions that prime idiopathic ventricular fibrillation. Science Translational Medicine, 13(620), [eabi9317]. https://doi.org/10.1126/scitranslmed.abi9317
    • Odening, K. E., Gomez, A. M., Dobrev, D., Fabritz, L., Heinzel, F. R., Mangoni, M. E., Molina, C. E., Sacconi, L., Smith, G., Stengl, M., Thomas, D., Zaza, A., Remme, C. A., & Heijman, J. (2021). ESC working group on cardiac cellular electrophysiology position paper: relevance, opportunities, and limitations of experimental models for cardiac electrophysiology research. EP Europace, 23(11), 1795-1814. https://doi.org/10.1093/europace/euab142
    • Lyon, A., van Mourik, M., Cruts, L., Heijman, J., Bekkers, S. C. A. M., Schotten, U., Crijns, H. J. G. M., Linz, D., & Lumens, J. (2021). Understanding the effects of heart beat irregularity on ventricular function in human atrial fibrillation: simulation models may help to untie the knot-Authors' reply. EP Europace, 23(11), 1869-1869. https://doi.org/10.1093/europace/euab144
    • Lyon, A., van Opbergen, C. J. M., Delmar, M., Heijman, J., & van Veen, T. A. B. (2021). In silico Identification of Disrupted Myocardial Calcium Homeostasis as Proarrhythmic Trigger in Arrhythmogenic Cardiomyopathy. Frontiers in physiology, 12, [732573]. https://doi.org/10.3389/fphys.2021.732573
    • Sutanto, H., Dobrev, D., & Heijman, J. (2021). Angiotensin Receptor-Neprilysin Inhibitor (ARNI) and Cardiac Arrhythmias. International journal of molecular sciences, 22(16), [8994]. https://doi.org/10.3390/ijms22168994
    • Nedios, S., Lindemann, F., Heijman, J., Crijns, H. J. G. M., Bollmann, A., & Hindricks, G. (2021). Atrial remodeling and atrial fibrillation recurrence after catheter ablation: Past, present, and future developments. Herz, 46(4), 312-317. https://doi.org/10.1007/s00059-021-05050-1
    • Sultan, A., Wormann, J., Luker, J., van der Bruck, J. H., Plenge, T., Rudolph, V., Klinke, A., Heijman, J., Mollenhauer, M., Ravekes, T., Baldus, S., & Steven, D. (2021). Significance of myeloperoxidase plasma levels as a predictor for cardiac resynchronization therapy response. Clinical research in cardiology, 110(8), 1173-1180. https://doi.org/10.1007/s00392-020-01690-1
    • Heijman, J., Sutanto, H., Crijns, H. J. G. M., Nattel, S., & Trayanova, N. A. (2021). Computational models of atrial fibrillation: achievements, challenges and perspectives for improving clinical care. Cardiovascular Research, 117(7), 1682-1699. https://doi.org/10.1093/cvr/cvab138
    • Nattel, S., Sager, P. T., Huser, J., Heijman, J., & Dobrev, D. (2021). Why translation from basic discoveries to clinical applications is so difficult for atrial fibrillation and possible approaches to improving it. Cardiovascular Research, 117(7), 1616-1631. https://doi.org/10.1093/cvr/cvab093
    • Wagner, M., Sadek, M. S., Dybkova, N., Mason, F. E., Klehr, J., Firneburg, R., Cachorro, E., Richter, K., Klapproth, E., Kuenzel, S. R., Lorenz, K., Heijman, J., Dobrev, D., El-Armouche, A., Sossalla, S., & Kaemmerer, S. (2021). Cellular Mechanisms of the Anti-Arrhythmic Effect of Cardiac PDE2 Overexpression. International journal of molecular sciences, 22(9), [4816]. https://doi.org/10.3390/ijms22094816
    • Aguilar, M., Heijman, J., Dobrev, D., & Nattel, S. (2021). One Ring to Rule Them All: Continuous Monitoring of Patients With Secondary Atrial Fibrillation Points to a Unifying Underlying Mechanism. Canadian Journal of Cardiology, 37(5), 686-689. https://doi.org/10.1016/j.cjca.2021.01.018
    • Xenakis, M. N., Kapetis, D., Yang, Y., Gerrits, M. M., Heijman, J., Waxman, S. G., Lauria, G., Faber, C. G., Westra, R. L., Lindsey, P. J., & Smeets, H. J. (2021). Hydropathicity-based prediction of pain-causing NaV1.7 variants. BMC Bioinformatics, 22(1), [212]. https://doi.org/10.1186/s12859-021-04119-2
    • Vagos, M. R., Arevalo, H., Heijman, J., Schotten, U., & Sundnes, J. (2021). A Computational Study of the Effects of Tachycardia-Induced Remodeling on Calcium Wave Propagation in Rabbit Atrial Myocytes. Frontiers in physiology, 12, [651428]. https://doi.org/10.3389/fphys.2021.651428
    • Heijman, J., Hohnloser, S. H., & Camm, A. J. (2021). Antiarrhythmic drugs for atrial fibrillation: lessons from the past and opportunities for the future. EP Europace, 23, 14-22. https://doi.org/10.1093/europace/euaa426
    • Nedios, S., Sanatkhani, S., Oladosu, M., Seewoester, T., Richter, S., Arya, A., Heijman, J., Crijns, H. J. G. M., Hindricks, G., Bollmann, A., & Menon, P. G. (2021). Association of low-voltage areas with the regional wall deformation and the left atrial shape in patients with atrial fibrillation: A proof of concept study. IJC Heart & Vasculature, 33, [100730]. https://doi.org/10.1016/j.ijcha.2021.100730
    • Heijman, J., Vernooy, K., & C van Gelder, I. (2021). The road goes ever on: innovations and paradigm shifts in atrial fibrillation management. EP Europace, 23, 1-3. https://doi.org/10.1093/europace/euab061
    • Heijman, J., Ghossein, M. A., Vernooy, K., & Linz, D. (2021). The walk of life: Remote monitoring provides insights into physical activity during a pandemic. IJC Heart and Vasculature, 33, [100772]. https://doi.org/10.1016/j.ijcha.2021.100772
    • van Cauteren, Y. J. M., Smulders, M. W., Theunissen, R. A. L. J., Gerretsen, S. C., Adriaans, B. P., Bijvoet, G. P., Mingels, A. M. A., van Kuijk, S. M. J., Schalla, S., Crijns, H. J. G. M., Kim, R. J., Wildberger, J. E., Heijman, J., & Bekkers, S. C. A. M. (2021). Cardiovascular magnetic resonance accurately detects obstructive coronary artery disease in suspected non-ST elevation myocardial infarction: a sub-analysis of the CARMENTA Trial. Journal of Cardiovascular Magnetic Resonance, 23(1), [40]. https://doi.org/10.1186/s12968-021-00723-6
    • Peper, J., Kownatzki-Danger, D., Weninger, G., Seibertz, F., Pronto, J. R., Sutanto, H., Pacheu Grau, D., Hindmarsh, R., Brandenburg, S., Kohl, T., Hasenfuß, G., Gotthardt, M., Rog-Zielinska, E. A., Wollnik, B., Rehling, P., Urlaub, H., Wegener, J. W., Heijman, J., Voigt, N., ... Lehnart, S. E. (2021). Caveolin3 Stabilizes McT1-Mediated Lactate/Proton Transport in Cardiomyocytes. Circulation Research, 128(6), e102–e120. https://doi.org/10.1161/CIRCRESAHA.119.316547
    • Qi, X-Y., Hassani, F. V., Hoffmann, D., Xiao, J., Xiong, F., Villeneuve, L. R., Ljubojevic-Holzer, S., Kamler, M., Abu-Taha, I., Heijman, J., Bers, D. M., Dobrev, D., & Nattel, S. (2021). Inositol Trisphosphate Receptors and Nuclear Calcium in Atrial Fibrillation. Circulation Research, 128(5), 619-635. https://doi.org/10.1161/circresaha.120.317768
    • Lyon, A., van Mourik, M., Cruts, L., Heijman, J., Bekkers, S. C. A. M., Schotten, U., Crijns, H. J. G. M., Linz, D., & Lumens, J. (2021). Both beat-to-beat changes in RR-interval and left ventricular filling time determine ventricular function during atrial fibrillation. EP Europace, 23, I21-I28. https://doi.org/10.1093/europace/euaa387
    • Fabritz, L., Crijns, H. J. G. M., Guasch, E., Goette, A., Häusler, K. G., Kotecha, D., Lewalter, T., Meyer, C., Potpara, T. S., Rienstra, M., Schnabel, R. B., Willems, S., Breithardt, G., Camm, A. J., Chan, A., Chua, W., de Melis, M., Dimopoulou, C., Dobrev, D., ... Kirchhof, P. (2021). Dynamic risk assessment to improve quality of care in patients with atrial fibrillation: the 7th AFNET/EHRA Consensus Conference. EP Europace, 23(3), 329-344. https://doi.org/10.1093/europace/euaa279
    • Xenakis, M. N., Kapetis, D., Yang, Y., Heijman, J., Waxman, S. G., Lauria, G., Faber, C. G., Smeets, H. J., Lindsey, P. J., & Westra, R. L. (2021). Non-extensitivity and criticality of atomic hydropathicity around a voltage-gated sodium channel's pore: a modeling study. Journal of Biological Physics, 47(1), 61-77. https://doi.org/10.1007/s10867-021-09565-w
    • Heijman, J., Luermans, J. G. L. M., Linz, D., van Gelder, I. C., & Crijns, H. J. G. M. (2021). Risk Factors for Atrial Fibrillation Progression. Cardiac Electrophysiology Clinics, 13(1), 201-209. https://doi.org/10.1016/j.ccep.2020.10.011
    • Heijman, J., Linz, D., & Schotten, U. (2021). Dynamics of Atrial Fibrillation Mechanisms and Comorbidities. Annual Review of Physiology, 83, 83-106. https://doi.org/10.1146/annurev-physiol-031720-085307
    • Nedios, S., Loebe, S., Knopp, H., Seewoester, T., Heijman, J., Crijns, H. J. G. M., Arya, A., Bollmann, A., Hindricks, G., & Dinov, B. (2021). Left atrial activation and asymmetric anatomical remodeling in patients with atrial fibrillation: The relation between anatomy and function. Clinical Cardiology, 44(1), 116-122. [23515]. https://doi.org/10.1002/clc.23515
  • 2020
    • Gomez, A. M., Heijman, J., & Remme, C. A. (2020). The ESCWorking Group Cardiac Cellular Electrophysiology. European Heart Journal, 41(46), 4374-4376. https://doi.org/10.1093/eurheartj/ehaa646
    • Sutanto, H., Lyon, A., Lumens, J., Schotten, U., Dobrev, D., & Heijman, J. (2020). Cardiomyocyte calcium handling in health and disease: Insights from in vitro and in silico studies. Progress in Biophysics & Molecular Biology, 157, 54-75. https://doi.org/10.1016/j.pbiomolbio.2020.02.008
    • Sutanto, H., & Heijman, J. (2020). Beta-Adrenergic Receptor Stimulation Modulates the Cellular Proarrhythmic Effects of Chloroquine and Azithromycin. Frontiers in physiology, 11, [587709]. https://doi.org/10.3389/fphys.2020.587709
    • Vagos, M. R., Arevalo, H., Heijman, J., Schotten, U., & Sundnes, J. (2020). A Novel Computational Model of the Rabbit Atrial Cardiomyocyte With Spatial Calcium Dynamics. Frontiers in physiology, 11, [556156]. https://doi.org/10.3389/fphys.2020.556156
    • Xenakis, M. N., Kapetis, D., Yang, Y., Heijman, J., Waxman, S. G., Lauria, G., Faber, C. G., Smeets, H. J., Westra, R. L., & Lindsey, P. J. (2020). Cumulative hydropathic topology of a voltage-gated sodium channel at atomic resolution. Proteins-structure Function and Bioinformatics, 88(10), 1319-1328. https://doi.org/10.1002/prot.25951
    • Bogossian, H., Linz, D., Heijman, J., Bimpong-Buta, N-Y., Bandorski, D., Frommeyer, G., Erkapic, D., Seyfarth, M., Zarse, M., & Crijns, H. J. (2020). QTc evaluation in patients with bundle branch block. IJC Heart & Vasculature, 30, [100636]. https://doi.org/10.1016/j.ijcha.2020.100636
    • Heijman, J., Muna, A. P., Veleva, T., Molina, C. E., Sutanto, H., Tekook, M. A., Wang, Q., Abu-Taha, I., Gorka, M., Künzel, S., El-Armouche, A., Reichenspurner, H., Kamler, M., Nikolaev, V. O., Ravens, U., Li, N., Nattel, S., Wehrens, X. H., & Dobrev, D. (2020). Atrial Myocyte NLRP3/CaMKII Nexus Forms a Substrate for Post-Operative Atrial Fibrillation. Circulation Research, 127(8), 1036-1055. https://doi.org/10.1161/circresaha.120.316710
    • Sutanto, H., Cluitmans, M. J. M., Dobrev, D., Volders, P. G. A., Bébarová, M., & Heijman, J. (2020). Acute effects of alcohol on cardiac electrophysiology and arrhythmogenesis: Insights from multiscale in silico analyses. Journal of Molecular and Cellular Cardiology, 146, 69-83. https://doi.org/10.1016/j.yjmcc.2020.07.007
    • Lyon, A., Dupuis, L. J., Arts, T., Crijns, H. J. G. M., Prinzen, F. W., Delhaas, T., Heijman, J., & Lumens, J. (2020). Differentiating the effects of β-adrenergic stimulation and stretch on calcium and force dynamics using a novel electromechanical cardiomyocyte model. American Journal of Physiology-heart and Circulatory Physiology, 319(3), H519-H530. https://doi.org/10.1152/ajpheart.00275.2020