Paula da Costa Martins

Associate professor

Dr Paula da Costa Martins has graduated in Biology at the Faculty of Sciences, University of Lisbon, in Portugal. Afterwards, she moved to Amsterdam, in the Netherlands, to work on cellular and molecular biology, focussing on the interactions between immune and endothelial cells, and their contribution to inflammation and atherosclerosis, at Sanquin Research, and for which she obtained her PhD at the University of Amsterdam. Subsequently, she followed her post-doctoral research at the Hubrecht Institute (Utrecht, The Netherlands), studying the contribution of noncoding RNAs in the onset and development of heart disease.

She has been working at Maastricht University since 2010. The focus of her research is deciphering the contribution of non-coding RNAs, specially microRNAs, to the development and progression of cardiac disease. More specifically, she centres her research on understanding how different cardiac cell types communicate to influence each other’s phenotype and in a concerted manner contribute to pathologic cardiac remodelling. Her main interest is unveiling how cardiomyocytes send 'microRNA messages’ to cardiac endothelial cells and inflammatory cells via exosomes, to alter their angiogenic and inflammatory properties, respectively. In this way she expects to identify new gene targets or processes where one can intervene to prevent or cure heart disease.

Department of Cardiology
Department of Molecular Biology and RNA Technology 
Universiteitsingel 50, 6229 ER Maastricht
PO Box 616, 6200 MD Maastricht
T: +31 (0)43 388 22 22

  • 2020
    • Videira, R. F., Martins, P. A. D. C., & Falcao-Pires, I. (2020). Non-Coding RNAs as Blood-Based Biomarkers in Cardiovascular Disease. International journal of molecular sciences, 21(23), [9285]. https://doi.org/10.3390/ijms21239285
    • de Abreu, R. C., Fernandes, H., Martins, P. A. D. C., Sahoo, S., Emanueli, C., & Ferreira, L. (2020). Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nature Reviews Cardiology, 17(11), 685-697. https://doi.org/10.1038/s41569-020-0389-5
    • Kesidou, D., Martins, P. A. D. C., de Windt, L. J., Brittan, M., Beqqali, A., & Baker, A. H. (2020). Extracellular Vesicle miRNAs in the Promotion of Cardiac Neovascularisation. Frontiers in physiology, 11, [579892]. https://doi.org/10.3389/fphys.2020.579892
    • Videira, R. F., & da Costa Martins, P. A. (2020). Non-coding RNAs in Cardiac Intercellular Communication. Frontiers in physiology, 11, [738]. https://doi.org/10.3389/fphys.2020.00738
    • Prando, V., Bertoli, S., Favaro, G., Guescini, M., Di Mauro, V., Di Bona, A., Lo Verso, F., Soares, R., Dokshokova, L., Martins, P. D. C., Capri, M., Salvioli, S., Franceschi, C., Catalucci, D., Mongillo, M., Sandri, M., & Zaglia, T. (2020). Circulating muscle-derived MIR-206 links skeletal muscle dysfunction to cardiac autonomic denervation. Vascular Pharmacology, 132, [106742]. https://doi.org/10.1016/j.vph.2020.106742
    • Santos-Faria, J., Gavina, C., Rodrigues, P., Coelho, J., Martins, P. D. C., Leite-Moreira, A., & Falcao-Pires, I. (2020). MicroRNAs and ventricular remodeling in aortic stenosis. Revista portuguesa de cardiologia, 39(7), 377-387. https://doi.org/10.1016/j.repc.2019.09.014
    • Vonhoegen, I. G. C., el Azzouzi, H., Olieslagers, S., Vasilevich, A., de Boer, J., Tinahones, F. J., Martins, P. A. D. C., de Windt, L. J., & Murri, M. (2020). MiR-337-3p Promotes Adipocyte Browning by Inhibiting TWIST1. Cells, 9(4), [1056]. https://doi.org/10.3390/cells9041056
    • Peters, M. M. C., Sampaio-Pinto, V., & da Costa Martins, P. A. (2020). Non-coding RNAs in endothelial cell signalling and hypoxia during cardiac regeneration. Biochimica et Biophysica Acta-Molecular Cell Research, 1867(3), [118515]. https://doi.org/10.1016/j.bbamcr.2019.07.010
  • 2019
    • Zaglia, T., Prando, V., Bertoli, S., Favaro, G., Di Mauro, V., Guescini, M., Di Bona, A., Lo Verso, F., Soares, R., Martins, P. D. C., Catalucci, D., Mongillo, M., & Sandri, M. (2019). Circulating muscle-derived mir-206 links skeletal muscle dysfunction to cardiac autonomic denervation. European Heart Journal, 40, 80-80.
    • Raso, A., Dirkx, E., Philippen, L. E., Fernandez-Celis, A., De Majo, F., Sampaio-Pinto, V., Sansonetti, M., Juni, R., el Azzouzi, H., Calore, M., Bitsch, N., Olieslagers, S., Oerlemans, M. I. F. J., Huibers, M. M., de Weger, R. A., Reckman, Y. J., Pinto, Y. M., Zentilin, L., Zacchigna, S., ... De Windt, L. J. (2019). Therapeutic Delivery of miR-148a Suppresses Ventricular Dilation in Heart Failure. Molecular Therapy, 27(3), 584-599. https://doi.org/10.1016/j.ymthe.2018.11.011
    • Duygu, B., Juni, R., Ottaviani, L., Bitsch, N., Wit, J. B. M., de Windt, L. J., & Martins, P. A. D. C. (2019). Comparison of different chemically modified inhibitors of miR-199b in vivo. Biochemical Pharmacology, 159, 106-115. https://doi.org/10.1016/j.bcp.2018.11.013
    • Ali, T., Mushtaq, I., Maryam, S., Farhan, A., Saba, K., Jan, M. I., Sultan, A., Anees, M., Duygu, B., Hamera, S., Tabassum, S., Javed, Q., Martin, P. A. D. C., & Murtaza, I. (2019). Interplay of N- acetyl cysteine and melatonin in regulating oxidative stress-induced cardiac hypertrophic factors and microRNAs. Archives of Biochemistry and Biophysics, 661, 56-65. https://doi.org/10.1016/j.abb.2018.11.007
  • 2018
    • Abreu, R. C., & Martins, P. A. (2018). cROSsing the cardiac MIRe: fibroblast-cardiomyocyte ex(o)press. American Journal of Physiology-heart and Circulatory Physiology, 314(6), H1253-H1255. https://doi.org/10.1152/ajpheart.00096.2018
  • 2017
    • D'Souza, A., Pearman, C. M., Wang, Y., Nakao, S., Logantha, S. J. R. J., Cox, C., Bennett, H., Zhang, Y., Johnsen, A. B., Linscheid, N., Poulsen, P. C., Elliott, J., Coulson, J., McPhee, J., Robertson, A., Martins, P. A. D. C., Kitmitto, A., Wisloff, U., Cartwright, E. J., ... Boyett, M. R. (2017). Targeting miR-423-5p Reverses Exercise Training-Induced HCN4 Channel Remodeling and Sinus Bradycardia. Circulation Research, 121(9), 1058-1068. https://doi.org/10.1161/CIRCRESAHA.117.311607
    • da Costa Martins, P. A. (2017). Mononuclear Diploidy at the Heart of Cardiomyocyte Proliferation. Cell Stem Cell, 21(4), 421-422. https://doi.org/10.1016/j.stem.2017.09.012
    • Ottaviani, L., & da Costa Martins, P. A. (2017). Non-coding RNAs in cardiac hypertrophy. Journal of Physiology, 595(12), 4037-4050. https://doi.org/10.1113/JP273129
  • 2016
  • 2015
    • Philippen, L. E., Dirkx, E., da Costa-Martins, P. A., & De Windt, L. J. (2015). Non-coding RNA in control of gene regulatory programs in cardiac development and disease. Journal of Molecular and Cellular Cardiology, 89(Pt A), 51-8. https://doi.org/10.1016/j.yjmcc.2015.03.014
    • Lok, S. I., de Jonge, N., van Kuik, J., van Geffen, A. J. P., Huibers, M. M. H., van der Weide, P., Siera, E., Winkens, B., Doevendans, P. A., de Weger, R. A., & Da Costa Martins, P. A. (2015). MicroRNA Expression in Myocardial Tissue and Plasma of Patients with End-Stage Heart Failure during LVAD Support: Comparison of Continuous and Pulsatile Devices. PLOS ONE, 10(10), [e0136404]. https://doi.org/10.1371/journal.pone.0136404
  • 2014
    • Poels, E. M., Bitsch, N., Slenter, J. M., Kooi, M. E., de Theije, C. C., De Windt, L. J., van Empel, V. P., & da Costa Martins, P. A. (2014). Supplementing exposure to hypoxia with a copper depleted diet does not exacerbate right ventricular remodeling in mice. PLOS ONE, 9(4), [92983]. https://doi.org/10.1371/journal.pone.0092983
    • Roncarati, R., Anselmi, C. V., Losi, M. A., Papa, L., Cavarretta, E., Martins, P. D. C., Contaldi, C., Jotti, G. S., Franzone, A., Galastri, L., Latronico, M. V. G., Imbriaco, M., Esposito, G., De Windt, L., Betocchi, S., & Condorelli, G. (2014). Circulating miR-29a, Among Other Up-Regulated MicroRNAs, Is the Only Biomarker for Both Hypertrophy and Fibrosis in Patients With Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 63(9), 920-927. https://doi.org/10.1016/j.jacc.2013.09.041
  • 2013
    • Dirkx, E., da Costa Martins, P. A., & De Windt, L. J. (2013). Regulation of fetal gene expression in heart failure. Biochimica et Biophysica Acta-Molecular Basis of Disease, 1832(12), 2414-2424. https://doi.org/10.1016/j.bbadis.2013.07.023
    • Dirkx, E., Gladka, M. M., Philippen, L. E., Armand, A-S., Kinet, V., Leptidis, S., el Azzouzi, H., Salic, K., Bourajjaj, M., da Silva, G. J. J., Olieslagers, S., van der Nagel, R., de Weger, R., Bitsch, N., Kisters, N., Seyen, S., Morikawa, Y., Chanoine, C., Heymans, S., ... De Windt, L. J. (2013). Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nature Cell Biology, 15(11), 1282-1293. https://doi.org/10.1038/ncb2866
    • El Azzouzi, H., Leptidis, S., Dirkx, E., Hoeks, J., van Bree, B., van de Brand, K., McClellan, E. A., Poels, E., Sluimer, J. C., van den Hoogenhof, M. M., Armand, A. S., Yin, X., Langley, S., Bourajjaj, M., Olieslagers, S., Krishnan, J., Vooijs, M., Kurihara, H., Stubbs, A., ... De Windt, L. J. (2013). The Hypoxia-Inducible MicroRNA Cluster miR-199a similar to 214 Targets Myocardial PPAR delta and Impairs Mitochondrial Fatty Acid Oxidation. Cell Metabolism, 18(3), 341-354. https://doi.org/10.1016/j.cmet.2013.08.009
    • Leptidis, S., el Azzouzi, H., Lok, S. I., de Weger, R., Olieslagers, S., Kisters, N., Silva, G. J., Heymans, S., Cuppen, E., Berezikov, E., De Windt, L. J., & Martins, P. D. C. (2013). A Deep Sequencing Approach to Uncover the miRNOME in the Human Heart. PLOS ONE, 8(2), [e57800]. https://doi.org/10.1371/journal.pone.0057800
  • 2010